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In these notes we give an overview of the derivation of the TRANSP current drive
algorithms by Hirshman and Sigmar (refs. [1, 2, 3], NMCURB=1) and by Lin-Liu and
Hinton as well as Kim, Callen and Hamnen, (refs. [5, 4], NMCURB=3). The latter
one was derived independently by Lin-Liu et al., and earlier by Kim et al., whereby
both take a somewhat different approach but arrive at the same results. The Lin-
Liu version is a short derivation, so we won’t repeat it here. The Kim version is
scattered throughout the original paper, wherefore we summarise it. The Hirshman
algorithm is scattered throughout an anthology of papers, and doesn’t seem to be
written down in one piece anywhere but here.
Both algorithms obey different restrictions. The one by Kim contains assumptions
which are only valid in the banana regime. The one by Hirshman is valid in the
banana as well as in the plateau regime, but only for inverse aspect ratios of ε ≤ 0.15.
Kim’s algorithm is valid for arbitrary aspect ratios, he only assumes an elliptic
plasma. Hirshman doesn’t comment on the plasma shape.
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1. Derivation of the algorithm by Kim et al.
The flux surface averaged total current through NBI heating is

⟨J∥B⟩
total

= ⟨J∥B⟩
F
+ ⟨J∥B⟩

H
(1)

with ⟨J∥B⟩
F
the (unshielded) current through fast ions

⟨J∥B⟩
F
= ef ⟨nf BV∥,f ⟩ (2)

⟨J∥B⟩
H

the shielding current of the electrons

⟨J∥B⟩
H
= −e τee

me

⎧⎪⎩ΛNC
0 ⟨BFe,f1⟩ +ΛNC

1 ⟨BFe,f2⟩⎫⎪⎭ (3)

the coefficients

ΛNC
0 = µ

(e)
3 + l(e)22
D

(4)

ΛNC
1 = − l

(e)
12 + µe2
D

(5)

D = (µ(e)1 + l(e)11 ) (µ(e)3 + l(e)22 ) − (µ(e)2 + l(e)12 )
2

(6)

and the approximations

⟨BFe,f1⟩ ≅
me e2

f

τee e2 ⟨nf BV∥,f ⟩ (7)

⟨BFe,f2⟩ ≅
3
2 ⟨BFe,f1⟩ (8)

Therefore one finds

⟨J∥B⟩
H
= −e τee

me

⟨BFe,f1⟩
⎧⎪⎪⎪⎪⎩

ΛNC
0 + 3

2 ΛNC
1

⎫⎪⎪⎪⎪⎭
(9)

= −
e2
f

e
⟨nf BV∥,f ⟩

⎧⎪⎪⎪⎪⎩
ΛNC

0 + 3
2 ΛNC

1
⎫⎪⎪⎪⎪⎭

(10)

and thus

⟨J∥B⟩
total

= ef ⟨nf BV∥,f ⟩ (1 − ef
e

⎧⎪⎪⎪⎪⎩
ΛNC

0 + 3
2 ΛNC

1
⎫⎪⎪⎪⎪⎭
) (11)

= Zf e ⟨nf BV∥,f ⟩ (1 − Zf e

Zeff e
F) (12)

= Zf e ⟨nf BV∥,f ⟩ (1 − Zf
Zeff

F) (13)

F ≡ Zeff
⎧⎪⎪⎪⎪⎩

ΛNC
0 + 3

2 ΛNC
1

⎫⎪⎪⎪⎪⎭
(14)

Inserting ΛNC
j , one obtains for F

F = Zeff
µ
(e)
3 + l(e)22 − 3

2 l
(e)
12 − 3

2 µ
(e)
2

(µ(e)1 + l(e)11 ) (µ(e)3 + l(e)22 ) − (µ(e)2 + l(e)12 )
2 (15)
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The viscosity matrix is defined by

[µ(e)] = [µ
(e)
1 µ

(e)
2

µ
(e)
2 µ

(e)
3

] (16)

its coefficients are given by Kim et al. as

µ
(e)
1 = g (Zeff +

√
2 − ln(1 +

√
2)) (17)

µ
(e)
2 = g (3

2 Zeff + 4/
√

2 − 5
2 ln(1 +

√
2)) (18)

µ
(e)
3 = g (13

4 Zeff + 39
4

√
2 − 25

4 ln(1 +
√

2)) (19)

with the ratio of trapped and untrapped particles

g ≡ ft
1 − ft

(20)

The friction matrix is defined by

[l(a)] = [l
(a)
11 l

(a)
12

l
(a)
21 l

(a)
22

] (21)

with

l
(e)
11 = Zeff (22)
l
(e)
12 = l(e)21 = 3

2 Zeff (23)
l
(e)
22 =

√
2 + 13

4 Zeff (24)

Inserting everything, one obtains for F

F = (Z2
eff + 1.41Zeff) + g (Z2

eff + 0.45Zeff)
(Z2

eff + 1.41Zeff) + g (2Z2
eff + 2.66Zeff + 0.75) + g2 (Z2

eff + 1.24Zeff + 0.35)
(25)

In the limit of g → 0 ⇒ F → 1 the shielding current of the electrons equals the
Ohkawa current (where neoclassical effects are neglected):

⟨J∥B⟩
Ohkawa

= −
Z2
f

Zeff
e ⟨nf BV∥,f ⟩ (26)

⟨J∥B⟩
total

= ⟨J∥B⟩
F
+ ⟨J∥B⟩

Ohkawa
(27)

Physical quantities:
⟨J∥B⟩

total
total NBI driven current

⟨J∥B⟩
F

current through fast ions
⟨J∥B⟩

H
shielding current of the electrons (neoclassical)

⟨J∥B⟩
Ohkawa

Ohkawa shielding current (non-neoclassical)
me electron mass
τee electron collisionality
Zeff effective nuclear charge of plasma
Zf nuclear charge number of fast ions
ef = Zf e charge of fast ions
e unit charge (positive)
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2. Derivation of the TRANSP algorithm
The TRANSP current drive algorithm corresponds to the one in the paper of Hirsh-
man and Sigmar [3] with the K-coefficients from the paper of Hirshman [1]. Thereby
the definitions of µ(e)j , l(e)ij and K

(e)
ij are different in both papers. The factors are

distributed differently from µ̂
(e)
j and l̂(e)ij to µ(e)j , l(e)ij and K(e)ij . In the calculation of

the shielding factor the factors cancel in both papers.
Besides, both papers give different equations for K(e)ij . In [3] an equation for the
banana and for the plateau regime is given, respectively. In [1] an equation valid for
both regimes is given.

The current drive through fast ions is given in Hirshman and Sigmar [3] (p. 1174,
eqs. (8.27)-(8.28)) as (G here corresponds to F in the paper):

⟨J∥B⟩ = ⟨Jf ⋅B⟩ = nf ef ⟨V∥,f B⟩G (28)

G = 1 − Zf
Zeff

+
⎧⎪⎪⎪⎪⎪⎩
Zf
Zeff

+ n ∣e∣ Vi,θ ⟨B2⟩
nf ef ⟨V∥,f B⟩

⎫⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎩
l̂
(e)
12 µ̂

(e)
2 + l̂(e)22 µ̂

(e)
1

l̂
(e)
11 l̂

(e)
22 − (l̂(e)12 )2

⎫⎪⎪⎪⎪⎪⎪⎪⎭
(29)

with

µ̂
(e)
j =

3 ⟨(n ⋅ ∇B)2⟩
⟨B2⟩ µ

(e)
j (30)

l̂
(e)
ij = −me ne

τee
l
(e)
ij (31)

the viscosity coefficients([3], p. 1108, eqs. (4.20)-(4.22)):

µ
(e)
1 =K11 (32)
µ
(e)
2 =K12 − 5

2 K11 (33)
µ
(e)
3 =K22 − 5K12 + 25

4 K11 (34)

and the friction coefficients ([3], p. 1174, below eq. (8.28)):

l
(e)
11 = Zeff (35)
l
(e)
12 = l(e)21 = 3

2 Zeff (36)
l
(e)
22 =

√
2 + 13

4 Zeff (37)

The K-coefficients are defined for the banana regime as ([3], p. 1114, eq. (4.61))

K
(e,B)
ij = ft

1 − ft
neme

τee
{x2(i+j−2)

e νeD τee}
⟨B2⟩

3 ⟨(n ⋅ ∇B)2⟩ (38)

and in the plateau regime as ([3], p. 1117, eq. (4.72))

K
(e,P )
ij = ft

neme

τe
{x2(i+j−2)

e νetot(v) τe}
⟨B2⟩

3 ⟨(n ⋅ ∇B)2⟩ (39)
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Hirshman and Sigmar argue the second term in the first brackets (the one which
is proportional to the poloidal component of the ion velocity Vi,θ) is of the order
O (

√
me/mi) and thus negligible:

G = 1 − Zf
Zeff

+
⎧⎪⎪⎪⎪⎪⎪⎩
Zf
Zeff

+O (
√

me

mi

)
⎫⎪⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎩
l̂
(e)
12 µ̂

(e)
2 + l̂(e)22 µ̂

(e)
1

l̂
(e)
11 l̂

(e)
22 − (l̂(e)12 )2

⎫⎪⎪⎪⎪⎪⎪⎪⎭
(40)

= 1 − Zf
Zeff

⎧⎪⎪⎪⎪⎪⎪⎪⎩
1 − l̂

(e)
12 µ̂

(e)
2 + l̂(e)22 µ̂

(e)
1

l̂
(e)
11 l̂

(e)
22 − (l̂(e)12 )2

⎫⎪⎪⎪⎪⎪⎪⎪⎭
= 1 − Zf

Zeff
⎧⎩1 −H⎫⎭ (41)

In the TRANSP JBSHLD algorithm one finds:

jNBCD ≡ jf [1 − Zf
Zeff

(1 − H̃)] (42)

H̃ = ft
3
2 Zeff (K̃12 − 5

2 K̃11) + (
√

2 + 13
4 Zeff) K̃11

(
√

2 + 13
4 Zeff)Zeff − (3

2 Zeff)2
(43)

With the relations from [1] following below this becomes

H̃ = l
(e)
21 µ

(e)
2 + l(e)22 µ

(e)
1

l
(e)
11 l

(e)
22 − (l(e)12 )2

(44)

µ
(e)
j = τee

me ne

3 ⟨(n ⋅ ∇B)2⟩
⟨B2⟩ µ̃

(e)
j (45)

Hirshman defines the coefficients of the viscosity matrix in the regime of large mean
free path (banana/plateau regime) in analogy to [2]:

µ̃
(e)
j = ftme ne

⟨B2⟩
3 ⟨(n ⋅ ∇B )2⟩

{(x2
e − 5

2)
j−1

ν
(e)
t } (46)

Multiplying this with τee/τee one finds the factors from 30, 31, 38 and 39

µ̃
(e)
j = ft

me ne
τee

⟨B2⟩
3 ⟨(n ⋅ ∇B )2⟩

{(x2
e − 5

2)
j−1

ν
(e)
t τee} (47)

The braces denote the velocity integration operator:

{A(ve)} =
8

3
√
π

∞

∫
0

dxx4 exp (−x2)A(vth,e x) (48)

with the ratio x of velocity v and thermal velocity vth:

x2
e =

v2
e

v2
th,e

= v2
e

2Te/me

(49)

vth,e =
√

2kB Te
me

(50)

Hirshman defines the K-coefficients as

K̃
(e)
1j (ν∗e , Zeff) = {x2(j−1)

e ν
(e)
t τee} (51)
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and uses this to express the coefficients of the viscosity matrix:

µ̃
(e)
0 = ft

me ne
τee

⟨B2⟩
3 ⟨(n ⋅ ∇B )2⟩

= 1.38pe ν∗e
q Rmaj

vth,e
(52)

µ̃
(e)
1 = µ̃(e)0 K̃11 (53)
µ̃
(e)
2 = µ̃(e)0 (K̃12 − 5

2 K̃11) (54)

The normalised electron collisionality is given in analogy to [? ? ]:

ν∗e =
√

2 q Rmaj

ε3/2 vth,e τee
(55)

With the thermal velocity of the electrons vth,e and the collisionality of the electrons
νee = τ−1

ee

νee =
16

√
π

3
ne e4 ln Λe

m2
e v

3
th,e

(56)

this becomes

ν∗e =
16

√
2π

3
q ne e4 ln ΛeRmaj

ε3/2m2
e v

4
th,e

=
√

32π e4

3k2
B

q ne ln Λe

T 2
e

¿
ÁÁÀR5

maj

R3
min

(57)

The numerical solution of eq. 51 is then fitted with the following expression:

Kij =
K
(0)
ij

(1 +
√
Aij ν∗e +Bij ν∗e ) (1 +

√
Cij ν∗e ε

3/2 +Dij ν∗e ε
3/2)

(58)

what from the following coefficients result

K11 =
0.53 +Zeff

(1 +
√
A11 ν∗e +B11 ν∗e ) (1 +

√
C11 ν∗e ε

3/2 +D11 ν∗e ε
3/2)

(59)

A11 = 3.44Zeff +
0.52 − 0.42Zeff

1 + 1.35Zeff

B11 = 0.56 + 0.96Zeff

C11 = 0.25Zeff +
0.14 + 0.55Zeff

1 + 5Zeff

D11 = 0.51Zeff +
0.7 + 0.78Zeff

1 +Zeff

K12 =
0.71 +Zeff

(1 +
√
A12 ν∗e +B12 ν∗e ) (1 +

√
C12 ν∗e ε

3/2) +D12 ν∗e ε
3/2

(60)

A12 = 0.31Zeff +
0.1 + 0.084Zeff

1 + 1.3Zeff

B12 = 0.26 + 0.35Zeff

C12 = 0.081Zeff +
0.072 + 0.15Zeff

1 + 3Zeff

D12 = 0.29Zeff +
0.42 + 0.62Zeff

1 + 1.42Zeff
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with an error of ≤ 6% for 0.01 ≤ ε ≤ 0.15.
For low collisonality ν∗e = 0 one finds for the K-coefficients

K
(0)
11 = 0.53 +Zeff

K
(0)
12 = 0.71 +Zeff

and thus for H(0)

H(0) = ft
1.5Zeff (0.71 +Zeff − 2.5 (0.53 +Zeff)) + (1.41 + 3.25Zeff) (0.53 +Zeff)

Zeff (1.41 + 3.25Zeff) − 2.25Z2
eff

= ft
0.75 + 2.21Zeff +Z2

eff
1.41Zeff +Z2

eff
(61)

which corresponds to the equation for the banana regime from Hirshman and Sigmar
[3] (p. 1175, eq. (8.29)):

F (0) = 1 − Zf
Zeff

+ ft
⎧⎪⎪⎪⎪⎪⎩
Zf
Zeff

+ n ∣e∣ Vi,θ < B2 >
nf ef < V∥,f B >

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩

0.75 + 2.21Zeff +Z2
eff

1.41Zeff +Z2
eff

⎫⎪⎪⎪⎪⎪⎭
(62)

Neglecting terms propotional to Vi,θ, this corresponds to the TRANSP formula with
H(0):

F (0) = 1 − Zf
Zeff

⎧⎪⎪⎪⎪⎪⎩
1 − ft

0.75 + 2.21Zeff +Z2
eff

1.41Zeff +Z2
eff

⎫⎪⎪⎪⎪⎪⎭
= 1 − Zf

Zeff

⎧⎪⎩1 −H(0)⎫⎪⎭ (63)

Physical quantities:
n = B/B unit vector of the magnetic field
Zeff effective nuclear charge of plasma
Zf nuclear charge number of fast ions
ft fraction of trapped particles
Vi,θ poloidal component of the ion velocity
ν
(e)
D 90○ scatter frequency
ν
(e)
tot total neoclassical collision frequency
ν
(e)
t neoclassical collision frequency stress anisotropy relaxation
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A. The JBSHLD algorithm from TRANSP

C-----------------------------------------------------------------------
C JBSHLD -- CLASSICAL/NEOCLASSICAL BEAM CURRENT SHIELDING FACTOR
C
C TAKEN OUT OF FOKKER AND PUT HERE DMC SEPT 1990
C

SUBROUTINE JBSHLD
C

use nbi_com
C
!============
! idecl: explicitize implicit INTEGER declarations:

IMPLICIT NONE
INTEGER, PARAMETER :: R8=SELECTED_REAL_KIND(12,100)
INTEGER j

!============
! idecl: explicitize implicit REAL declarations:

REAL*8 zrzon,zrboun,zrbounp,zrmajor,zcurr,zvstae,zdelta,zd1m
REAL*8 zft,zef,zd32,za11,zb11,zc11,zd11,zk11,za12,zb12,zc12
REAL*8 zd12,zk12

!============
LOGICAL ILSPIZ

C
C-------------------------------------------------------------
C D. MC CUNE IMPLIMENT NEOCLASSICAL BEAM CURRENT OPTION
C COLLISIONALITY, TRAPPING FRACTION FORMULAE FROM "RESIS.FOR"
C A,B, K0 COEFFICIENTS FROM HIRSHMAN, PHYS. FLUIDS VOL 21
C NO. 8 AUG 1978.
C CLASSICAL JB
C
C DMC OCT 1989 -- DECIDE ON N.C. OR CLASSICAL DRIVEN CURRENTS
C

ILSPIZ=.FALSE.
IF(NMCURB.EQ.2) THEN

ILSPIZ=.TRUE.
ELSE IF(NMCURB.EQ.3) THEN

ILSPIZ=.FALSE.
ENDIF

C
DO 100 J=LCENTR,LEDGE

XJBFAC(J)=(1.0_R8-XZBEAMI/XZEFFC(J,2))
C
C IF RESISTIVITY IS CLASSICAL, USE CLASSICAL BEAM CURRENT
C (NLSPIZ=.TRUE. ==> CLASSICAL, SPITZER RESISTIVITY S.R. RESIS)
C *** MOD DMC OCT 1989 ***
C CAN FORCE CLASSICAL/N.C. BEAM DRIVEN CURRENT INDEPENDENTLY
C SEE NAMELIST CONTROL NMCURB, AND DEFN. OF ILSPIZ ABOVE ***
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C
IF(ILSPIZ) GO TO 2995

C
ZRZON=RMNRMP(J,2)
ZRBOUN=RMNRMP(J,1)
ZRBOUNP=RMNRMP(J+1,1)
ZRMAJOR=RMJRMP(J,2)

C
C NEOCLASSICAL JB

ZCURR=2.5E4_R8*BZXR/ZRMAJOR**2
*ZRZON*(ZRBOUN/QGEO(J)+ZRBOUNP/QGEO(J+1))

C COLLISIONALITY NU*E
ZVSTAE=3.46E-9_R8*RHOEL(J,2)*CLOGE(J)*BZXR*

1 SQRT(ZRMAJOR*ZRZON)/(ZCURR*TE(J,2)*TE(J,2))
ZDELTA=ZRZON/ZRMAJOR
ZD1M=1._R8-ZDELTA

C TRAPPING FRACTION
ZFT=1._R8-ZD1M*ZD1M/(SQRT(1._R8-ZDELTA*ZDELTA)*

1 (1._R8+1.46_R8*SQRT(ZDELTA)))
C K11 COEFFICIENT

ZEF=XZEFFC(J,2)
ZD32=ZDELTA*SQRT(ZDELTA)
ZA11=3.44_R8*ZEF+(.52_R8-.42_R8*ZEF)/(1._R8+1.35_R8*ZEF)
ZB11=.56_R8+.96_R8*ZEF
ZC11=.25_R8*ZEF+(.14_R8+.55_R8*ZEF)/(1._R8+5.0_R8*ZEF)
ZD11=.51_R8*ZEF+(.7_R8+.78_R8*ZEF)/(1._R8+ZEF)
ZK11=(.53_R8+ZEF)/

((1._R8+SQRT(ZA11*ZVSTAE)+ZB11*ZVSTAE)*
(1._R8+SQRT(ZC11*ZVSTAE*ZD32)+ZD11*ZVSTAE*ZD32))

C K12 COEFFICIENT
ZA12=.31_R8*ZEF+(.1_R8+.084_R8*ZEF)/(1._R8+1.3_R8*ZEF)
ZB12=.26_R8+.35_R8*ZEF
ZC12=.081_R8*ZEF+(.072_R8+.15_R8*ZEF)/(1._R8+3._R8*ZEF)
ZD12=.29_R8*ZEF+(.42_R8+.62_R8*ZEF)/(1._R8+1.42_R8*ZEF)
ZK12=(.71_R8+ZEF)/

((1._R8+SQRT(ZA12*ZVSTAE)+ZB12*ZVSTAE)*
(1._R8+SQRT(ZC12*ZVSTAE*ZD32)+ZD12*ZVSTAE*ZD32))

C NEOCLASSICAL BEAM CURRENT CORRECTION
XJBFAC(J)=XJBFAC(J)+XZBEAMI/ZEF*ZFT*

(1.5_R8*ZEF*(ZK12-2.5_R8*ZK11)+
(1.414214_R8+3.25_R8*ZEF)*ZK11)
/(ZEF*(1.414214_R8+3.25_R8*ZEF)-2.25_R8*ZEF*ZEF)

2995 CONTINUE
C

XJBFAC(J)=MAX(1.E-5_R8,XJBFAC(J))
xjbfacs(j,lsbeam)=xjbfac(j) ! multi-species

C
100 CONTINUE
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C
C--------------------------------------------------------
C

RETURN
END
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